HONEYWELL AEROSPACE INVESTOR TECHNOLOGY TOUR

NOVEMBER 30, 2022

Honeywell

HONEYWELL AEROSPACE

Our products and services are found on virtually every commercial and defense and space aircraft. We build aircraft engines, cockpit and cabin electronics, wireless connectivity systems, mechanical components, and more, and connect many of them via our high-speed Wi-Fi offerings. Our solutions create healthier air travel, more fuel-efficient and better-maintained aircraft, more direct and on-time flight arrivals, safer skies and airports, and more comfortable flights, along with several innovations and services that reflect exciting and emerging new transportation methods such as autonomous and supersonic flight.

AEROSPACE OVERVIEW

WHO WE ARE

Honeywell Aerospace | Phoenix, AZ 2021 Sales: \$11B

Serving Airlines and Cargo, Business and General Aviation, Defense, Helicopters, Space, and Emerging transportation solutions that advance:

Profitability and productivity

JetWave/Aspire Satellite

Communications

- Mission readiness
- · Direct and on-time flights
- · Cleaner, safer, more comfortable flying
- Efficient and sustainable operations

PORTFOLIO HIGHLIGHTS

Electronic Solutions

- Navigation, Safety, and Surveillance
- Integrated Avionics Offerings

Engines and Power Systems

- Propulsion Engines
- Electric Power Systems

Mechanical Systems and Components

- · Air Pressure and Control Systems
- Life Support Systems and Air Travel Hygiene

Services and Connectivity

- Airtime Connectivity Services
- Flight Efficiency and Maintenance Optimization

Unmanned Aerial Systems / Urban Air Mobility

- Autonomous Flight, Detect-and-Avoid Systems
- Electric and Hybrid-Electric Propulsion

Unmanned Aerial

System Technologies

Aero Investor Technology Tour – November 30, 2022

AEROSPACE KEY MESSAGES

Long Term Tailwinds

- Well-positioned to take advantage of accelerating bizjet OEM jet growth and widebody return to flight
- Industry leading cost position growing investment as percent of sales while expanding segment margin to 29%
- Great positions on growing defense programs (F-35, GBSD, B-21, National Programs)
- Best in class space franchises (RWA's, CMG's, optical interlinks)

Best in Class Positioning for Future of Aviation

- \$25B FLRAA engine win with Boeing / SIK sets up multi-decade opportunity
- Over \$7B in UAM / UAS equipment wins with \$10B pipeline
- Revolutionizing flight decks in all markets with Honeywell Anthem[®]
- Industry leading R&D investment profile at a rate of 5% - 8% of revenue
- Retrofits / Modifications / Upgrades (RMUs): \$800M+ per year and growing to \$1B+ by 2024

Productivity Improvements Driving Continued Margin Expansion

- Digitized Processes: >75% of customer transactions M-to-M
- Leader in Connected Systems: Installed on 10,000+ aircraft
- One instance of ERP across entire enterprise
- 50% reduction in manufacturing footprint (2016 - 2022)
- Breakthrough Initiatives: vapor cycle cooling, alternative nav, electromechanical actuation, and LIDAR systems

Delivering The Future Today

AEROSPACE BUSINESS OVERVIEW

GROWTH DRIVERS

- ✓ Technology leadership driving differentiation in core and shaping the future
- ✓ \$7B+ of recent UAM / UAS program wins multiple platforms and products
- Connected business technology advances and expansion in defense
- ✓ Strong widebody flight hour growth near term, with steady long-term growth
- ✓ Accelerating RMUs and breakthrough initiatives to achieve above-market growth
- Exceptional cost position and poised to maximize gains on industry recovery

Attractive and Balanced Portfolio - Poised for Growth

AEROSPACE EXCITING MARKET OUTLOOK

	ATR Flight Hour Recovery Led by Widebody Platforms	Business Jet Market Setting Record Levels	Innovative Decoupled Portfolio	Industry-Leading Cost Position	Great Positions on Growing Platforms
•	Earn 3x more sales dollars per flight hour on widebody planes	 2021 business jet flight hours exceeded 2019 by 10% 	 Revenue >\$800M in 2021 and growing at 10% CAGR 	 Industry-leading R&D investment profile 	 ATR: 737 MAX, A320neo, A350

AEROSPACE GROWTH OUTLOOK

Air Transport (ATR)	Business Aviation (BGA)	Defense (D&S)	
DD%	MSD%	LSD%	
CAGR	CAGR	CAGR	

Well-Positioned to Capture Market Upcycle

SUSTAINABILITY AT THE FOREFRONT OF OUR GROUTH

DAVID SHILLIDAY VICE PRESIDENT AND GENERAL MANAGER POWER SYSTEMS

Honeywell

CARBON NEUTRAL BY 2035

We pledge to achieve carbon neutrality in our facilities and operations by 2035. Here's where we stand today.

MILLION CARS

the equivalent of the number of cars removed from the road for

one year thanks to Solstice

investment focused on solutions that improve environmental and social outcomes for customers

TURBINE ENGINE PRODUCT LINES

AEROSPACE SUSTAINABILITY PRODUCTS

SUSTAINABLE AVIATION FUEL (SAF)

HYDROGEN FUEL CELL

ELECTRIC POWER

GENERATORS AND TURBOGENERATORS ELECTRIC PROPULSION

HONEYWELL FORGE FLIGHT EFFICIENCY AUXILIARY POWER UNIT (APU)

AVIATION ROADMAP TO ZERO EMISSIONS

SAF is Here Now; H₂ Timeline Not Solidified Yet

EU AVIATION ZERO EMISSIONS ROADMAP

Source: Destination 2050

U.S. Building Similar Roadmap, but Role of H₂ Unclear

U.S. AVIATION ZERO EMISSIONS ROADMAP AMERICAN AIRLINES VIEW

Getting to Net Zero in 2050: American's Initial Pathway

Source: <u>American Airlines</u>

U.S. Not Bullish on H₂ and Sees SAF as More Reliable

TECHNOLOGY COMPARISON

Required Partially O Not Required

Parameters	Sustainable Aviation Fuel (SAF)	Parallel Hybrid Electric	Series Hybrid Electric	Battery Electric	Hydrogen Fuel Cell	Hydrogen Combustion	
Definition	Fuel mfd. from sustainable, renewable feedstock such as municipal waste, agricultural residue and waste lipid	A/C with Hybrid electric powertrain which combines conventional Internal combustion Engine (ICE) with electric propulsion system. Hybrid solutions also compatible with SAFs.		Aircraft runs on battery powered Electric motors	Producing electricity from H2 and O2 input to power an e-motor that drives the propeller.	Propulsion achieved by burning H2 instead of ATF (Kerosene) in a modified gas turbine engine.	
Climate Impact (GHG Emission)	CO ₂ Reduction: 30-60% NOx Reduction: 0 Water Vapor Increase: 0	30% - 60% emissions reduction with SAF	30% - 60% emissions reduction with SAF	TRUE ZERO No Emissions present	CO ₂ Reduction: 100% NOx Reduction: 100% Water Vapor: Knock Out	CO ₂ Reduction: 100% NOx Reduction: 50-80% Water Vapor: +150%	
Challenges	High cost (currently 2x Jet-A) Scaling feedstock / supply chain	Battery weight Electric motor & power distribution	Battery weight Electric motor & power distribution	Battery weight / range	Fuel cell power density Hydrogen storage volume	Engine changes Hydrogen storage volume	
Require new Engine Architecture	\bigcirc						
Require new A/C Architecture	\bigcirc	\bullet		•			
Require new Electrical Systems	\bigcirc	\bullet					
A/C Operations	Same turn around time as convention fuel	Same turn around time as convention fuel	Same turn around time as convention fuel	10x recharge time or battery exchange mechanism	2X longer refueling time for short range	2X – 3X longer refueling time for medium and long range	
Airport Infrastructure	Existing infrastructure can be used.			Fast charging or battery exchange system required.	Significant increase in H2 distribution a	infrastructure: production, and storage.	
Complexity	Medium	Medium	High	Very High	Very High	High	

SAF is Attractive in Near Term, Max Investment in Fuel Cell

APU LIFECYCLE ANALYSIS

Increasing Scrutiny on the Manufacturing and End of Life Impact

IN SUMMARY

The fleet that is today

Our immediate impact to sustainability is to enable the fleet of today to operate more efficiently

The fleet of the future

The process of doing so helps us learn some of the technical challenges we will face with fleet of future

Everything we are doing now is building a bridge of learnings for the future

Anything we do today that asks, "How can I be more efficient in my operations? More efficient in adoption of new technology?" So, when we get to a clean sheet aircraft, we can apply all these learnings

Sustainability at the Forefront of Our Growth

PATHWAY TO AUTONOMOUS FLIGHT

JIA XU CTO, UAS/UAM

Honeywell

Aero Investor Technology Tour – November 30, 2022

Source: Getty Images

PATHWAY TO AUTONOMOUS FLIGHT

We expect all of aviation to go autonomous (or highly automated)

- Unmanned cargo and military UAS need it now
- Urban air taxi needs it to scale
- General and commercial aviation will follow to increase safety and reduce cost

Honeywell is positioned to lead in aviation autonomy

- Sense: we build precise and accurate navigation and flight controls sensors
- **Decide**: we build mission critical avionics and software platforms
- Act: we build reliable, miniaturized actuation systems
- We can introduce autonomy as a series of seamless upgrades to avionics and sensor platforms

Autonomy is not some mystical thing – it can be boiled down to concrete functions and requirements

Autonomy can be Engineered, Tested, and Certified

AUTONOMY DEFINED

Autonomous Flight: fly missions with a minimum level of human supervision and intervention

WHY AUTONOMY

Value	Details
Reduce pilot cost For UAM, Cargo, Military UAS	Reduce training cost. Decouple operations from pilot availability. Ground operators can supervise multiple UAS.
Increase utilization For Cargo, Military UAS	Make route planning independent of crew positioning to increase utilization. Reduce pilot cost to further increase vehicle utilization
Improve safety and mission assurance For Cargo, Military UAS and GA	Reduce accidents caused by human error. Safety operate unmanned aircraft under communication interruptions
Increase payload For UAM, Cargo	One more revenue seat on UAM vehicles. Increased cargo capacity. Snowball weight reduction for aircraft
Increase effectiveness For Military UAS	Faster orchestration of weapon systems. Operate under communication denial. Increase force in high intensity operations

USE CASE SCENARIOS	CARGO TRANSPORT FIXED ROUTE UNCONTROLLED AIRSPACE	CARGO TRANSPORT FIXED ROUTE CONTROLLED AIRSPACE	PEOPLE TRANSPORT FIXED ROUTE CONTROLLED AIRSPACE	PEOPLE TRANSPORT ON-DEMAND ROUTES CONTROLLED AIRSPACE	SEARCH & RESCUE FLEXIBLE PATTERN ANY AIRSPACE
					EUTUDE
PRIORITIZE, COMPLETE MISSION	-	-	-	-	NEEDED
COMMUNICATE					
TRANSPONDER - NORMAL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TRANSPONDER - EMER	NEEDED	NEEDED	NEEDED	NEEDED	NEEDED
ATC – NORMAL	-	NEEDED	NEEDED	NEEDED	NEEDED
ATC – EMER	-	NEEDED	NEEDED	NEEDED	NEEDED
GROUND	NEEDED	NEEDED	NEEDED	NEEDED	NEEDED
PAX	-	-	NEEDED	NEEDED	NEEDED
NAVIGATE					
FLY FLIGHT PLAN	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FLY TO DIVERT	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PLAN FLIGHT	-	-	-	NEEDED	\checkmark
MODIFY PLAN IN FLIGHT	-	-	-	NEEDED	NEEDED
AVOID A/C & OBSTACLES - AIR	NEEDED	NEEDED	NEEDED	NEEDED	NEEDED
AVOID A/C & OBSTACLES - TAXI	FUTURE	FUTURE	FUTURE	FUTURE	FUTURE
AVIATE					
CRUISE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TAKE-OFF	NEEDED	NEEDED	NEEDED	NEEDED	NEEDED
LANDING	NEEDED	NEEDED	NEEDED	NEEDED	NEEDED
ΤΑΧΙ	FUTURE	FUTURE	FUTURE	FUTURE	FUTURE
PARKING	FUTURE	FUTURE	FUTURE	FUTURE	FUTURE
REGULATE					
MONITOR HEALTH - ACTION IF NEEDED	D NEEDED	NEEDED	NEEDED	NEEDED	NEEDED

AUTONOMY: CONCEPT OF OPERATIONS

AUTONOMY: HONEYWELL SYSTEM

Aero Investor Technology Tour – November 30, 2022

SIMPLIFIED VEHICLE OPERATIONS: PATH TO AUTONOMY

Robust Detect and Avoid Path to Autonomy

Aero Investor Technology Tour – November 30, 2022

UNTANGLING AUTONOMY

Autonomy means

New ways to operate and radically improved economics

Increased aircraft automation

Varying levels of decision making by aircraft in different situations

Autonomy is

Not *necessarily* artificial intelligence / machine learning (AI / ML) and deep neural net

"What is the aircraft supposed to do?"

Autonomy = defined set of requirements

Can be engineered, tested, and certified

Honeywell

Honey

JEFF WOIRHAYE SENIOR DIRECTOR OFFERING MANAGEMENT, HONEYWELL ANTHEM

Honeywell

SAY HELLO TO

UNLOCKING NEW POSSIBILITIES

Smart and Intuitive User Experience

Connected

Advanced Safety Features

Flexible and Scalable

Honeywell

SMART AND INTUITIVE USER EXPERIENCE

SUPERMAP

0

123.000 KAVQ UNICOM HON889H

Radios 129.975 EDAX Info WHF 2 XPDR 1 123.000 VHF 2 1200

1 2 3 4 5 6 7 8 9 0 Q W E R T Y U I O P A S D F G H J K L / Z X C V B N M sease

MISSION MANAGER

Honeywell

CONNECTED

SECURE COCKPIT BROWSER

ELECTRONIC FLIGHT BAG INTEGRATION

POWERED BY HONEYWELL FORGE

ADVANCED SAFETY FEATURES

SYNTHETIC VISION SYSTEM WITH 3D WAYPOINTS AND 3D TRAFFIC

3D RUNWAY OVERRUN AWARENESS AND ALERTING SYSTEM

TAXI ASSIST WITH 3D AIRPORT MOVING MAP

FLEXIBLE AND SCALABLE

ADVANCED AIR MOBILITY

GENERAL AVIATION BUSINESS AVIATION AIR TRANSPORT MILITARY

Honeywell

HORE BUILDE ANTHEN

 Contraction
 Tools
 Careeras

 Image
 Sector
 Tools
 Careeras

 Contractication
 Tools
 Careeras

 Contractication
 Tools
 Careeras

 Image
 Sector
 Careeras

 Manager
 Stratus
 Manager

 Contractication
 Tools
 Careeras

 Image
 Careeras
 Image

 Image
 Sectors
 Dirming

 Image
 Sectors
 Careeras

 Image
 Sectors
 Dirming

 Settings
 System
 Reports

 Settings
 System
 Tools

 Settings
 System
 Tools

13700 75

HONEYWELL ADVANCED AERIAL MOBILITY

STEPHANE FYMAT VPGM, UAS/UAM

CASOLINE TO ELECTRIC TO SELF-DRIVING

IT'S HAPPENING IN AEROSPACE, TOO AND HONEYWELL IS LEADING THE WAY

Honeywell, Hanwha Systems to collaborate on urban air mobility development in South Korea

By Press

IIII 20 2022

DENSO, Honeywell Co-Develop E-Motor for Lilium's All-Electric Jet

Small, light electric motor creates high output to power Lilium Jet

May 24, 2022

REUTERS®

World ~ Business ~ Legal ~ Markets ~ More ~

2 minute read · October 14, 2022 8:23 AM GMT-7 · Last Updated a month ago

Hyundai's air taxi unit picks Honeywell as avionics supplier

By Allison Lampert and Abhijith Ganapavaram

COMMERCIAL AEROSPACE

Aa

Archer selects Honeywell for climate system tech and actuators for its production eVTOL

Honeywell's actuators can accept hundreds of micro adjustments and commands per second from fly-by-wire computers, enabling precise navigation in urban environments.

Aug. 23, 2022

Honeywell's advanced air mobility lab powers future aviation projects

By Pilar Wolfsteller, Phoenix | 15 April 2022

Honeywell Aerospace is on the cutting edge of advanced air mobility, developing

HEARING BEFORE THE UNITED STATES SENATE COMMITTEE ON COMMERCE, SCIENCE AND TRANSPORTATION SUBCOMMITTEE ON AVIATION SAFETY, OPERATIONS, AND INNOVATION

"FAA Reauthorization: Integrating New Entrants into the National Airspace System"

Wednesday, September 28, 2022

Written Testimony of Stéphane Fymat Vice President and General Manager, Urban Air Mobility and Unmanned

> Industry Leaders, Including NBAA, Discuss AAM's Future at Honeywell Summit

OUR VISION

100-mile trip in 45 minutes by air taxi, cutting commute times in half

Same-day package delivered anywhere by autonomous air cargo

OPPORTUNITY SIZE

	Segment	Examples	Start of Service	Approximate 2030 TAM	(\$B)	
THE REAL	Air Taxi	Lilium, Vertical Aerospace, Archer, Beta, Volocopter, Wisk	2025	Vehicle: \$80 Billion HON Opportunity: \$20 Billion	 HON Addressable Vehicle OEM 94 	120 112 4
	Middle Mile Cargo	Pipistrel, Beta, MightyFly, Elroy Air	2023	Vehicle: \$35 Billion HON Opportunity: \$10 Billion	68 51 30 34 39 43 45 51 49 49	81 ⁸⁹ 8
	Local Light Parcel	Google Wing, WingCopter, Amazon	2022	Vehicle: \$5 Billion HON Opportunity: \$1 Billion	22 25 28 31 32 50 24 8 9 11 12 13 14 19 24 2021 2022 2023 2024 2025 2026 2027 202	6 31 31 28 2029 2030

HONEYWELL IS WINNING

MicroVCS for Archer Midnight

Actuation for flight control surfaces, engine-tilt and propeller pitch for Archer Midnight

cFBW for dual use autonomous cargo

Fly-by-wire and SATCOM for Pipistrel Nuuva 300 autonomous large cargo drone

\$7B in Wins with \$10B in Pipeline Over Next 5 Years

Typical UAM Vehicle Price

*Vehicles shown for illustration purposes; quoted value range does not reflect exact Honeywell system content on specific vehicles

999999

\$25K - \$150K\$5K - \$60KTypical Delivery Drone PricePotential Honeywell Content

REACHING TOMORROW'S POTENTIAL, TODAY.

Honeywell is building the **critical systems** that make disruptive aviation possible. We are positioned to address a **\$30B+ annual opportunity** in 2030.

Honeywell